

Technical Datasheet

Analysis Name: Determination of Heavy Metals by ICP-MS

Method Number: LIBR 005

Scope Application: This method describes the determination of

Lead, Cadmium, Mercury, Aluminum Arsenic, Selenium, Chromium, Cobalt, Molybdenum and Tin by ICP-MS in foods, beverages (finished, concentrates, and powders), health products, pet foods, and raw materials such as premixes, food grade

oils, salts, and tastemakers.

Description: Test portion is heated at 200°C with nitric

acid in a closed vessel microwave digestion system. Digested samples are ionized through inductively coupled argon plasma and the mass spectrum of sample is

measured.

Sample Weight Required: 50 g

Method Reference:

Analytical Platform: ICP-MS

Special Information: LOQ are dependent of matrix. Method

accredited ABNT ISO 17025: 2017.

Analyte Reported	Alias	Unit of Measure	Typical Limit of Quantification	Uncertainty
Lead	Pb	mg/kg	0.010	< 15 %
Cadmium	Cd	mg/kg	0.005	< 15 %
Mercury	Hg	mg/kg	0.005	< 15 %
Aluminum	Al	mg/kg	0.100	< 15 %
Arsenic	As	mg/kg	0.010	< 15 %
Selenium	Se	mg/kg	0.030	< 15 %
Chromium	Cr	mg/kg	0.020	< 15 %
Cobalt	Со	mg/kg	0.010	< 15 %
Molibdenium	Мо	mg/kg	0.015	< 15 %
Tin	Sn	mg/kg	0.035	< 15 %